SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Create your free account to read unlimited documents.
Create your free account to continue reading.
of
Create your free account to continue reading.
1 Like
Share
Download to read offline
Download to read offline
Optomechanical force sensing is an established measurement technique that can reach remarkable precision. In most applications, the system exerting the force on the mechanical oscillator is treated classically and we are not interested in any coherence between states of the system that give rise to different forces. A full quantum treatment, however, enables richer physics since measuring more such systems can lead to interference effects.
In this talk, I will show that the coherence can survive the measurement and can be used for quantum-technological applications. I will consider a model example of spin readout in superconducting qubits. Coupling two transmon qubits to mechanical oscillators and reading out the mechanical positions using a single beam of light provides information on the total spin of the qubits. It is thus possible to conditionally generate entanglement between the two qubits. The system represents a basic quantum network with superconducting circuits. The scheme has modest requirements on the system parameters; it does not require ground-state cooling or resolved-sideband regime and can work with quantum cooperativity moderately larger than unity.
Afterwards, I will consider another scheme, namely nondestructive detection of a single photon using an optomechanical transducer. The basic idea is similar to spin readout; the photon exerts a force on a mechanical oscillator and the the force is measured optically. I will argue that such a measurement is subject to a quantum limit due to backaction of the transducer on the dynamics of the photon and that this result also applies to other techniques of nondestructive photon detection, such as methods using Kerr interaction between the single photon and a meter beam. Finally, I will show numerically that measurement backaction can be evaded when the measurement rate is suitably modulated.
Optomechanical force sensing is an established measurement technique that can reach remarkable precision. In most applications, the system exerting the force on the mechanical oscillator is treated classically and we are not interested in any coherence between states of the system that give rise to different forces. A full quantum treatment, however, enables richer physics since measuring more such systems can lead to interference effects. In this talk, I will show that the coherence can survive the measurement and can be used for quantum-technological applications. I will consider a model example of spin readout in superconducting qubits. Coupling two transmon qubits to mechanical oscillators and reading out the mechanical positions using a single beam of light provides information on the total spin of the qubits. It is thus possible to conditionally generate entanglement between the two qubits. The system represents a basic quantum network with superconducting circuits. The scheme has modest requirements on the system parameters; it does not require ground-state cooling or resolved-sideband regime and can work with quantum cooperativity moderately larger than unity. Afterwards, I will consider another scheme, namely nondestructive detection of a single photon using an optomechanical transducer. The basic idea is similar to spin readout; the photon exerts a force on a mechanical oscillator and the the force is measured optically. I will argue that such a measurement is subject to a quantum limit due to backaction of the transducer on the dynamics of the photon and that this result also applies to other techniques of nondestructive photon detection, such as methods using Kerr interaction between the single photon and a meter beam. Finally, I will show numerically that measurement backaction can be evaded when the measurement rate is suitably modulated.
Total views
67
On Slideshare
0
From embeds
0
Number of embeds
0
Downloads
1
Shares
0
Comments
0
Likes
1
The SlideShare family just got bigger. You now have unlimited* access to books, audiobooks, magazines, and more from Scribd.
Cancel anytime.